PNAS:网上搜索数据追踪流感暴发
http://www.bio360.net/attachments/2015/11/1447110877c8178b4d70ee5cd1.jpg科研人员报告了一种方法,它能显著改善此前使用网上搜索数据追踪流感暴发的举措。为流感暴发做出准备和响应的能力依赖于对疾病活动的准确的实时估计。互联网服务产生的大数据集合有潜力提供此类估计。
Samuel Kou,Mauricio Santillana和 Shihao Yang开发了一个模型,根据Google Correlate和Google Trends的公开提供的网上搜索数据估计流感样疾病(ILI)活动。这个被称为ARGO的模型也纳入了来自美国疾病控制与预防中心(CDC)报告已公布的信息、关于过去流感暴发的季节性的信息,以及随着时间推移网上搜索行为的变化。这组作者使用ARGO估计了2009年3月29日到2015年7月11日的流感样疾病(ILI)活动,并且只纳入了至多到估计日期之前一周的美国疾病控制与预防中心(CDC)报告。
这组作者还使用几种现有的实时追踪模型估计了流感样疾病(ILI)活动,包括如今已经停用的Google Flu Trends。把这些估计与美国疾病控制与预防中心(CDC)报告的有流感样疾病(ILI)症状寻求医学护理的患者比例进行了比较,后者是一种成熟的流感活动替代指标。以多种准确性度量进行测试,ARGO的表现优于所有现有基于Google搜索的方法。这组作者说,可能把ARGO一般化,从而追踪不同时间和空间尺度上的其他疾病或社会趋势。
来源:生物360
Accurate estimation of influenza epidemics using Google search data via ARGO
Shihao Yanga, Mauricio Santillanab,c,1, and S. C. Koua,1
Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search–based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people’s online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.
http://www.pnas.org/content/early/2015/11/04/1515373112.abstract?sid=7e249a51-3468-45c4-8edd-1947c340aa43
页:
[1]