Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex.
Xia Z1, Xu G1, Yang X1, Peng N1, Zuo Q1, Zhu S1, Hao H1, Liu S1, Zhu Y2.
Author information
1state Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
2State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China yingzhu@whu.edu.cn.
Abstract
The innate immune response is critical for host defense and must be tightly controlled, but the molecular mechanisms responsible for its negative regulation are not yet completely understood. In this study, we report that transporter 1, ATP-binding cassette, subfamily B (TAP1), a virus-inducible endoplasmic reticulum-associated protein, negatively regulated the virus-triggered immune response. In this study, we observed upregulated expression of TAP1 following virus infection in human lung epithelial cells (A549), THP-1 monocytes, HeLa cells, and Vero cells. The overexpression of TAP1 enhanced virus replication by inhibiting the virus-triggered activation of NF-κB signaling and the production of IFNs, IFN-stimulated genes, and proinflammatory cytokines. TAP1 depletion had the opposite effect. In response to virus infection, TAP1 interacted with the TGF-β-activated kinase (TAK)1 complex and impaired the phosphorylation of TAK1, subsequently suppressing the phosphorylation of the IκB kinase complex and NF-κB inhibitor α (IκBα) as well as NF-κB nuclear translocation. Our findings collectively suggest that TAP1 plays a novel role in the negative regulation of virus-triggered NF-κB signaling and the innate immune response by targeting the TAK1 complex.
主要学术论文
Liu S, Peng NF, Xie JJ, Hao Q, Zhang M, Zhang Y, Xia ZC, Xu G, Zhao FP, Wang Q, Han T, Zhu Y*, Human hepatitis B virus S and E antigens inhibit major vault protein signaling in interferon induction pathways. Journal of Hepatology 2015, 62. 1015–1023.
Han T, Wan Y, Wang J, Zhao P, Yuan Y, Wang L, She Y, Broering R, Lu M, Ye L, Zhu Y*. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway. J Immunol. 2015, 194(6):2757-68.
Zhao F, Xu G, Zhou Y, Wang L, Xie J, Ren S, Liu S, Zhu Y*. MicroRNA-26b Inhibits Hepatitis B Virus Transcription and Replication by Targeting the Host Factor CHORDC1 Protein. J Biol Chem. 2014, 289(50):35029-41.
Wang J, Wang Q, Han T, Li YK, Zhu SL, Ao F, Feng J, Jing MZ, Wang L, Ye LB and Zhu Y*. Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst Cellular & Molecular Immunology. 2014, 1–12 (In Press)
Li Y, Xie J, Xu X, Wang J, Ao F, Wan Y, Zhu Y*. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1. Protein Cell. 2013.4(2):130-41.
Li Y, Xie J, Xu X, Liu L, Wan Y, Liu Y, Zhu C, Zhu Y*. Inducible interleukin 32 (IL-32) exerts extensive antiviral function via selective stimulation of interferon λ1 (IFN-λ1). J Biol Chem. 2013. 288(29):20927-41.
Wang Q, Chen X, Feng J, Cao Y, Song Y, Wang H, Zhu C, Liu S, Zhu Y*. Soluble interleukin-6 receptor-mediated innate immune response to DNA and RNA viruses. J Virol. 2013. 87(20):11244-54.
Yue X, Wang H, Zhao F, Liu S, Wu J, Ren W, Zhu Y*. Hepatitis B virus-induced calreticulin protein is involved in IFN resistance. J Immunol. 2012;189(1):279-86.
Liu S, Hao Q, Wang Y, Yue X, Peng N, Chen YN, Wu J, Zhu Y*. Major Vault Protein: A Virus-Induced Host Factor against Viral Replication through the Induction of Type-I Interferon. Hepatology. 2012. 56: 57-66.
Liu L, Cao Z, Chen J, Li R, Cao Y, Zhu C, Wu K, Wu J, Liu F, Zhu Y*. Influenza A Virus Induces Interleukin-27 through Cyclooxygenase-2 and Protein Kinase A Signaling. J Biol Chem. 2012 Apr 6;287(15):11899-910.
Fang J, Hao Q, Liu L, Li Y, Wu J, Huo X, Zhu Y*. Epigenetic Changes Mediated by miR29 Activate Cyclooxygenase-2 and Interferon-λ1 Production during Viral Infection. J Virol. 2012. 86(2) 2010-2020.
Li W, Sun W, Liu L, Yang F, Li YK, Chen YN, Fang JL, Zhang WJ, Wu JG, Zhu Y*. Interleukin 32: A Host Proinflammatory Factor against Influenza Viral Replication is Upregulated by Aberrant Epigenetic Modifications during Influenza A Virus Infection. J Immunol. 2010. 185, 5056 -5065.
Li W, Yang F, Liu Y, Gong R, Liu L, Feng Y, Hu P, Sun W, Hao Q, Kang L, Wu J, and Zhu Y*. Negative feedback regulation of IL-32 production by iNOS activation in response to dsRNA or influenza virus infection. Eur. J. Immunol. 2009. 39: 1019-1024.
Rasool ST, Tang H, Wu J, Li W, Mukhtar MM, Zhang J, Mu Y, Xing HX, Wu J, Zhu Y*. Increased level of IL-32 during human immunodeficiency virus infection suppresses HIV replication. Immunol Lett. 2008. 117(2):161-167.
Li W, Liu Y, Mukhtar MM, Gong R, Pan Y, Rasool ST, Gao Y, Kang L, Hao Q, Peng G, Chen Y, Chen X, Wu J, Zhu Y*. Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS ONE. 2008 Apr 16;3(4):e1985.
Liu M, Yang Y, Gu C, Yue Y, Wu KK, Wu J, Zhu Y*. Spike protein of SARS-CoV stimulates cyclooxygenase-2 expression via both calcium-dependent and calcium-independent protein kinase C pathways. FASEB J. 2007. 21(7):1586-96.