标准差(S 或SD) ,是用来反映变异程度,当两组观察值在单位相同、均数相近的情况下,标准差越大,说明观察值间的变异程度越大。即观察值围绕均数的分布较离散,均数的代表性较差。反之,标准差越小,表明观察值间的变异较小,观察值围绕均数的分布较密集,均数的代表性较好。在医学研究中,对于标准差的大小,原则上应该控制在均值的12 %以内,如果标准差过大,将直接影响研究的准确性。数理统计表明,在标准正态分布曲线下的面积是有规律性的,根据这一规律,人们经常用均数加减标准差来计算样本观察值数量的理论分布,并以此来鉴定样本的代表性。即: x ±110 s 表示68127 %的观察值在此范围之内; x ±1196 s 表示95 %的观察值在此范围内; x ±2158 s 表示99 %的观察值在此范围内。如果取得的样本资料的实际分布与理论分布非常接近,证明该样本具有代表性。反之,则需要重新修正抽样方法或样本含量。x ±1196 s 是确定正常值的方法,经常在工作中被采用,也称为95 %正常值范围。
2 标准误
标准误( Sx 或S E ) ,是样本均数的抽样误差。在实际工作中,我们无法直接了解研究对象的总体情况,经常采用随机抽样的方法,取得所需要的指标,即样本指标。样本指标与总体指标之间存在的差别,称为抽样误差,其大小通常用均数的标准误来表示。数理统计证明,标准误的大小与标准差成正比,而与样本含量( n ) 的平分根成反比,即: Sx = S/ n 这就是标准误的计算方法。
在实际工作中,由于抽取的样本较小,不呈标准正态分布( u 分布) ,而遵从t 分布,所以常用t 值代替1196 或2158。可在t 值表上查出不同自由度( n ′) 下、不同界值时的t 值。可见到自由度越小, t 值越大,当自由度逐渐增大时, t 值也逐渐接近1196 或2158 ,当n ′= ∞时, t 值就完全被其代替了。所以,我们常用X ± t 0105 Sx 表示总体均数的95 %可信区间,用x ± t 0101 Sx 表示总体均数的99 %可信区间。综上所述,标准差与标准误尽管都是反映变异程度的指标,但这是两个不同的统计学概念。标准差描述的是样本中各观察值间的变异程度,而标准误表示每个样本均数间的变异程度,描述样本均数的抽样误差,即样本均数与总体均数的接近程度,也可以称为样本均数的标准差。二者不可混淆。