原始出处:PNAS November 2, 2009, doi: 10.1073/pnas.0909285106
Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus
Bethan V. Lowdera, Caitriona M. Guinanea, Nouri L. Ben Zakoura, Lucy A. Weinertb, Andrew Conway-Morrisc, Robyn A. Cartwrighta, A. John Simpsonc, Andrew Rambautb, Ulrich Nübeld and J. Ross Fitzgeralda,1
aThe Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies,
bInstitute of Evolutionary Biology, and
cCentre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, Scotland, United Kingdom; and
dRobert Koch Institut, 38855 Wernigerode, Germany
The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.