数字PCR采用的策略概括起来非常简单,就是“分而治之”(divide and conquer),这种做法非常类似于计算机科学中的“分治算法”,将一个标准PCR反应分配到大量微小的反应器中,在每个反应器中包含或不包含一个或多个拷贝的目标分子( DNA模板) ,实现“单分子模板PCR扩增”,扩增结束后,通过阳性反应器的数目“数出”目标序列的拷贝数。在实际的数字PCR实验中,事实上是通过呈现两种信号类型的反应器比例和数目进行统计学分析,计算出原始样本中的模板拷贝数。
在实时定量PCR技术成熟和发展之前,早在1992年,南澳洲弗林德斯医学中心的科学家使用有限稀释、PCR和泊松分布数据校正模型的方法( limiting dilution, PCR and Poisson statistics),检测了复杂背景下低丰度的IgH重链突变基因,进行了极其精细的定量研究,虽然当时这种方法并没有被冠以“数字PCR”之名,但已经建立了数字PCR基本的实验流程,更重要的是了数字PCR检测中一个极其重要的原则——以“终点信号的有或无”(all-or-none end point )作为判断标志,这也是之后1999年Bert Vogelstein 和 Ken Kinzler将之命名为“数字PCR”(digital PCR)的主要原因。
CNV(Copy Number Variations,拷贝数变异)研究需要极高的定量精度以区别不同拷贝数之间的微小差异,测序方法适用于高于30%的变异率检测,而qPCR的最高分辨在1.5倍左右,数字PCR通过直接计数目标基因与参照基因( 拷贝数为1的基因,例如RNaseP) 的数目,计算比值,直接得到目标基因的拷贝数可以达到极高的拷贝数分辨精度[5]。