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Opinion statement

Existing therapies for glioblastoma (GBM), the most common malignant primary
brain tumor in adults, have fallen short of improving the dismal patient out-
comes, with an average 14-16-month median overall survival. The biological
complexity and adaptability of GBM, redundancy of dysregulated signaling path-
ways, and poor penetration of therapies through the blood-brain barrier contrib-
ute to poor therapeutic progress. The current standard of care for newly diag-
nosed GBM consists of maximal safe resection, followed by fractionated radio-
therapy combined with concurrent temozolomide (TMZ) and 6-12 cycles of adju-
vant TMZ. At progression, bevacizumab with or without additional chemotherapy
is an option for salvage therapy. The recent FDA approval of sipuleucel-T for
prostate cancer and ipilumimab, nivolumab, and pembrolizumab for select solid
tumors and the ongoing trials showing clinical efficacy and response durability
herald a new era of cancer treatment with the potential to change standard-of-
care treatment across multiple cancers. The evaluation of various immunothera-
peutics is advancing for GBM, putting into question the dogma of the CNS as an
immuno-privileged site. While the field is yet young, both active immunotherapy
involving vaccine strategies and cellular therapy as well as reversal of GBM-
induced global immune-suppression through immune checkpoint blockade are
showing promising results and revealing essential immunological insights regard-
ing kinetics of the immune response, immune evasion, and correlative biomarkers.
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The future holds exciting promise in establishing new treatment options for GBM
that harness the patients’” own immune system by activating it with immune
checkpoint inhibitors, providing specificity using vaccine therapy, and allowing
for modulation and enhancement by combinatorial approaches.

Introduction

In 2015, about 23,189 new primary malignant
brain tumors will be diagnosed in the United
States with 13,330 predicted deaths [1-3]. Gliomas,
the most common malignant primary tumor of the
central nervous system (CNS), present with an an-
nual incidence of about 5 in 100,000 with glio-
blastoma (GBM), the most common and aggressive
subtype constituting 54 % of gliomas [2, 3]. With
metastases exceedingly rare, GBM is restricted to
the CNS, where it is highly invasive, contributing
to recurrence [4]. The prognosis for GBM remains
grim, with a median survival of 14-16 months and
5-year survival rate of less than 5 % [2, 5, 3], due
partly to extensive tumor heterogeneity allowing for
treatment resistance, as well as difficulty in deliver-
ing therapeutics through the blood-brain barrier
(BBB) [6]. For newly diagnosed GBM, the
standard-of-care involves maximal safe resection
and subsequent 60 Gy fractionated radiotherapy
with concurrent daily temozolomide, followed by
6 to 12 monthly cycles of adjuvant temozolomide
[7, 5]. For recurrent GBM, bevacizumab, a human-
ized anti-vascular endothelial growth factor (VEGF)
monoclonal antibody, received accelerated approval
by the US FDA in 2009 due to durable radiograph-
ic response rates compared to historic controls,
although the overall survival (OS) remains un-
changed [8-10]. In the recurrent setting, adding
lomustine to bevacizumab may prolong survival,
and the potential benefit of this combination is
currently undergoing confirmation in the EORTC
26101 study (Clinicaltrials.gov: NCT01290939)
[11].

The current standard of care has improved the dismal
prognosis in GBM patients but marginally, highlighting
the urgency for effective and durable therapies. Recent
FDA approval of the sipuleucel-T (APC8015) prostate
cancer vaccine and of the immune checkpoint inhibitors
ipilumimab, pembrolizumab, and nivolumab for select

solid tumors including melanoma and non-small cell
lung cancer and the success in treating refractory leuke-
mias with engineered chimeric antigen receptor (CAR)
autologous T cells have opened a new chapter in cancer
treatment [12ee, 13, 14, 15ee, 16]. Early data from
accrual of GBM into immunotherapy trials
encompassing vaccines, checkpoint inhibitors, and
CAR T cells are showing promising results, putting into
question the dogma of the CNS as an immuno-
privileged site [17, 18]. While immune-tolerance in the
CNS is under intense study, the CNS has emerged as an
immunologically active environment where antigen is
presented and activated T cells can infiltrate through,
despite the absence of traditional lymphatics and of
resident naive T cells, as evidenced by auto-immunity
in the brain in demyelinating disease and the presence
of a rich GBM-associated immune-environment, includ-
ing tumor-specific T cells [17, 18].

GBM counteracts the anti-tumor immune re-
sponse in the CNS by causing local and systemic
immune-suppression through a myriad of mecha-
nisms. These include tumor camouflage through
downregulation of tumor-associated major histocom-
patibility complex (MHC)-I, expression of immune-
checkpoint regulators such as programmed cell death
ligand 1 (PD-L1), elaboration of immune-silencing
factors such as transforming growth factor-b, vascular
endothelial growth factor (VEGF), and interleukin-10,
recruitment of immunosuppressive cells including
regulatory T cells (Tregs) and M2 tumor-associated
macrophages, and outright killing of tumor-specific
activated T cells through tumor expression of the
Fas ligand [19-28, 18, 29, 30]. Aiding the immune
system in elimination of tolerogenic tumors, active
immunization with cancer vaccines, cellular therapy
with modified, activated T cells, and systemic
immune-modulation counteracting GBM-induced im-
munosuppression hold promise as the new corner-
stones of effective and durable treatment against
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GBM [17, 18]. This review highlights some of the key the past year evaluating various immunotherapy ap-
preclinical and clinical results that have emerged in proaches for neuro-oncology patients.

Treatment

Anti-glioma vaccines

Vaccines can direct multiple branches of the immune system against
target antigens and provide durability of the response through immu-
nological memory. Vaccines activate immune responses, with repeated
exposures leading to refinement in quality and speed of the response,
termed active immunotherapy. While effective anti-glioma vaccines are
in various stages of development, they offer encouraging safety profiles,
as well as potential durability of anti-tumor response. GlioVac is a
mixture of autologous tumor cells as well as three distinct allogeneic
GBM cell populations, inactivated through irradiation. Nine recurrent
GBM patients were vaccinated with GlioVac in combination with GM-
CSF, preceded by low-dose cyclophosphamide depletion of immune-
suppressive Tregs [31]. GlioVac showed minimal toxicity with 77 % 40-
week survival in vaccinated patients compared to 10 % in controls [31].
This approach is currently under validation in a phase II trial of recur-
rent, bevacizumab-naive GBM patients (Clinicatrials.gov:
NCT01903330). Targeted vaccine strategies are designed to elicit spe-
cific immune responses to tumor-specific antigens (TSAs) such as
EGFRVIII, human cytomegalovirus (CMV)-derived antigens, and IDH-1
(R132H) or tumor-associated antigens (TAA) including IL13Ra2, HER-
2, gp100, TRP2, EphA2, survivin, WT1, SOX2, SOX11, MAGE-A1,
MAGE-A3, AIM2, and SART1 among many [17, 18, 32, 33].

Early clinical and preclinical data show the potential of
strengthening and refining vaccine-induced anti-glioma immune
responses. CMV-antigens are almost universally expressed by gli-
omas. Preconditioning the vaccination site with tetanus/
diphtheria toxoid, a potent recall antigen, enhanced vaccination
with CMV phosphoprotein 65 (pp65) RNA-pulsed autologous
dendritic cells (DCs) in 12 GBM patients randomized to immu-
notherapy with or without immune-preconditioning [34e]. Im-
proved progression-free survival (PFS) and OS were associated
with preconditioning, and three of the pre-conditioned patients
were alive at >36.6 months. This was recapitulated in mice, with
recall-antigen preconditioning leading to improved trafficking of
professional antigen presenting dendritic cells (DCs) to lymph
nodes in a CCL-3-dependent mechanism, suggesting a possible
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role for the chemokine CCL-3 in clinical vaccine potentiation
[34e].

Involved in cellular metabolism, the isocitrate dehydrogenase-1 (IDH-
1) (R132H) mutation is a promising TSA [35, 36]. IDH-1 (R132H) is
rarely expressed in primary GBM but rather in low-grade glioma and
secondary GBM, where the mutation is tumorigenic by inducing a
hypermethylated CpG island methylator (CIMP) phenotype leading to
tumor suppressor down-modulation [35, 36e]. Preclinical data show
anti-tumor efficacy of a 15-mer peptide vaccine mapping to the R132H
mutation in a human MHC-II transgenic orthotropic mouse model for
glioma [36e]. Notably, a subset of patients with IDH-1 (R132H) ex-
pressing gliomas were found to have circulating IDH-1 (R132H)-spe-
cific peripheral T cells and antibodies, absent in patients with wild-type
tumors, indicating that IDH-1 (R132H) is a natural immuno-dominant
epitope in anti-tumor immune-surveillance [36¢]. An IDH-1 (R132H)
peptide vaccine is about to undergo phase I clinical testing
(Clinicaltrials.gov: NCT02454634) [36e].

Dendritic-cell-based vaccines

DCs are professional antigen-presenting cells (APCs), demonstrating
feasibility and efficacy in multiple phase I/II vaccine trials for GBM [17,
18, 32, 33]. DC-based vaccines involve the isolation of patient’s pe-
ripheral blood monocytes coupled with in vitro differentiation to DCs
with GM-CSF and IL-4 [20], followed by antigen pulsing, further
maturation, and subsequent intra-dermal vaccination [37-39]. There
are a wealth of DC-cell based GBM vaccine trials currently open or
completed [20, 51, 45]. Of these, a trial using DCs pulsed with a
synthetic TAA peptide cocktail containing HER2, TRP-2, gp100, MAGE-
1,1L13Ra2, and AIM-2 showed promising phase I results with a median
OS of 38.4 months [40ee]. Data from the randomized phase I trial
(ICT-107) in 124 patients with newly diagnosed GBM showed the
strongest treatment effects in human leukocyte antigen-A2 (HLA-A2)
expressing patients.

Peptide vaccines

Subject to similar limitations including HLA restriction, peptide and
protein vaccines seek to resolve the variability and production com-
plexity of cell-based vaccines by pulsing DCs in vivo through admin-
istration of peptide antigen in combination with an immune-adjuvant
[17, 18, 32, 33]. Rindopepimut (Celldex Therapeutics), a synthetic
mutated epidermal growth factor receptor variant III (EGFRVIII) neo-
antigen-specific peptide, conjugated to the immune adjuvant keyhole
limpet hemocyanin (KLH), and administered with GM-CSF, is the
most advanced peptide vaccine having undergone phases I, 11, and 11T
clinical trials [41, 42]. EGFRVII], found in approximately 20-30 % of
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GBMs, contains an in-frame deletion of exons 2-7, creating a neo-
antigenic junction not expressed on normal cells [33, 43, 44] and is an
independent negative prognostic factor in GBM [43, 45].

» InphasesIand II testing, rindopepimut was well tolerated with adverse
effects limited largely to injection site reactions and showed improved
mean OS ranging from 22.8 to 26 months, with even higher median
OS of 47.7 months in patients with robust anti-EGFRvIII antibody
responses [46]. Remarkably, about 85 % of patients developed >four-
fold increase in EGFRVIII-specific antibodies in an expanded phase I1
trial of rindopepimut, highlighting the possibility of using anti-
EGFRVIII antibody titer as a response predictive biomarker [47e¢].
Progressive tumor following rindopepimut vaccination no longer
expressed EGFRVIII, proving that a targeted vaccine strategy can eradi-
cate its target cell population [48, 46]. ReACT (Clinicaltrials.gov:
NCT01498328) is the first phase II study to assess rindopepimut in the
recurrent setting. In this trial, GBM patients received bevacizumab in
combination with either rindopepimut or placebo vaccine [49, 47ee,
43]. Results from ReACT, presented at the American Society for Clinical
Oncology meeting in June 2015, were historic in that this is the first
randomized immunotherapy trial to demonstrate a survival benefit for
glioblastoma patients. Specifically, patients who received
rindopepimut had a median OS of 11.6 months compared to
9.3 months of those treated with placebo vaccine (p=0.0386; HR 0.57).
In addition, patients on rindopepimut had higher PFS and durable
radiographic rates as well as decreased corticosteroid requirement
compared to controls. As previously demonstrated, the administration
of rindopepimut was associated with good tolerability and no unex-
pected toxicities were observed when co-administered with
bevacizumab. Rindopepimut was also shown to elicit EGFRvIII-specific
humoral immune responses both in bevacizumab-naive and
bevacizumab-refractory patients, despite heavy pretreatment. The early
generation of EGFRVIII antibodies following rindopepimut adminis-
tration may serve as a potential biomarker of anti-tumor activity.

Heat shock-peptide complex vaccines

A different vaccine approach relies on the ability of heat shock proteins (HSPs)
in their function as intracellular chaperones to couple with nascent proteins and
broadly activate both innate and adaptive immune systems, as well as aug-
menting antigen presentation through MHC-I and MHC-II molecules [50, 17,
18]. The high metabolic rate of tumor cells drives upregulation of HSPs to meet
intensified translation demands in the context of an increase in misfolded and
aborted proteins [50]. Of the HSPs upregulated in GBM, HSP96 has garnered
particular interest in immunotherapy. As a member of the HSP90 class of
chaperones, HSP96 has such notable substrates as EGFRvIII, FAK, AKT, hTERT,
p53, cdk4, MAPK, and PI3 kinase, which play important roles in tumorigenesis
[50]. HSP vaccines are an adaptation of the tumor-lysate vaccine approach, in
which patients’ tumor cells are lysed, HSP96-peptide complexes isolated, and
used for vaccination [50, 17, 18]. In a phase I recurrent GBM trial,
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immunogenicity characterized by tumor-specific intra-tumoral immune re-
sponses in 11 of 12 tested patients as well as the safety of this approach was
validated with a median OS of 47 weeks in responders versus 16 weeks in non-
responders [51] leading to a randomized phase II study of HSP96 vaccination
with bevacizumab for GBM in the recurrent setting. In this trial, the primary
endpoint of OS >6 months was reached in 90.1 % of patients (95 % confidence
interval (CI) 75.9-96.8) [52¢] with further early phase clinical trials underway
(Clinicatrials.gov: NCT02122822, NCT01814813, and NCT00293423). Data
presented at the 2015 American Society for Clinical Oncology meeting showed
that, when combined with standard of care therapy, an autologous HSP-based
vaccine was well tolerated and increased median PFS to 7.8 months (95 % CI
11.3-21.6) and median OS to 23.8 months (95 % CI 19.8-30.2) in 46 patients
[53]. This study highlighted PD-L1 expression on circulating monocytes as a
possible biomarker in immunotherapy, with PD-L1 expression signifying
tumor-induced immune suppression. Median OS for patients with high PD-
L1 expression was 18.0 months (95 % CI 10.0-23.3) compared to the median
OS of 44.7 months for low PD-L1 expressers (hazard ratio for death 3.35; 95 %
CI 1.36-8.23; p=0.003). Together with MGMT methylation status, PD-L1 ex-
pression was a significant independent predictor of survival (Clinicatrials.gov:
NCT00905060) [53].

Ongoing clinical trials

* CMV proteins are attractive TSAs [17, 18] and almost ubiquitously
expressed in glioma in the absence of productive infection, raising the
question whether CMV itself drives oncogenes or expression of CMV
proteins reflects reactivation in the immune-suppressive tumor envi-
ronment [54-56]. Clinicaltrials.gov: NCT00639639 is currently
assessing the efficacy of CMV pp65-LAMP-pulsed DCs with and with-
out autologous T-cell transfer. To circumvent the difficulty of DC-based
vaccine production, a phase 1 trial of a CMV peptide vaccine in cur-
rently underway (Clinicatrials.gov: NCT01854099). Rindopepimut is
undergoing further validation in ACT IV, a double-blinded phase III
trial with randomization to either rindopepimut or control KLH injec-
tion enrolling some 374 patients with newly diagnosed, EGFRvIII-
positive GBM following gross total resection at over 100 centers
worldwide (Clinicaltrials.gov: NCT01480479, expected completion in
November 2016) [47ee, 49, 43]. In addition, it will also include
patients with subtotal resection, which will assess the efficacy of
rindopepimut at targeting bulky residual disease [49]. Other peptide
vaccine trials in GBM target TAAs including WT1 (Clinicatrials.gov:
NCT02078648) [57], as well as a combination of IL13Ra2, survivin,
EphA2 (Clinicatrials.gov: NCT02149225, NCT01920191).

* Personalized anti-GBM peptide vaccines take advantage of unique
mutations leading to expression of neo-antigens in an individual pa-
tient targetable by peptide vaccines [17, 32, 31, 58]. These are identified
through next-generation DNA sequencing [59, 60]. The potential pep-
tides are then selected based on binding affinity predictions to patient-
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specific, class I HLA molecules [61]. Preclinical data for this approach
have been promising, showing both specific immune responses to the
selected peptides as well as vaccine efficacy in a melanoma model [62]
leading to an ongoing clinical trial in advanced melanoma
(Clinicatrials.gov: NCT01970358) as well as initiation of a trial of
personalized peptide vaccine (Enova) against GBM (Clinicatrials.gov:
NCT01903330).

Checkpoint blockade

To maintain tolerance and protect from autoimmunity, immune re-
sponses require exquisite regulation both at activation and attenuation
steps with respect to T cell selection in the thymus, priming in and
export from lymphoid tissue, activation in target tissue, subsequent
recruitment of accessory cells, and finally a precisely orchestrated re-
sponse shutdown [17, 43, 18]. This is partly achieved through an
elegant interplay between T cell co-stimulatory and inhibitory mole-
cules of the B7/CD28 family, termed immune checkpoints that mod-
ulate activity of T cell receptor (TCR) signaling. This mechanism has
been subverted by tumors to induce early exhaustion, anergy, and T cell
death leading to immune evasion of tumor [17, 43, 18]. Two check-
point mediators in the spotlight of cancer immunotherapy are cytotoxic
T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell
death protein 1 (PD-1) [17, 43, 18].

CTLA-4 and PD-1 differ in timing, cue for upregulation, and location of
modulator activity. CTLA-4, expressed on T cells and upregulated by
TCR activation, binds to its ligands CD80 and CD86 (B7-1 and B7-2)
modulating early priming of T cells in lymphoid tissue. PD-1, expressed
on T cells and pro-B cells, is upregulated by cytokines and responds to
its ligands PD-L1 and PD-L2. PD-1 generally acts at a later time point
during immune activation in target tissue with broader effects includ-
ing enhancement of Treg and dampening of B and NK cell responses
[17, 43, 18]. One mechanism of tumor immune evasion is the expres-
sion of PD-L1 on tumor cells directly and in the tumor microenviron-
ment. Blocking the immune checkpoints CTLA-4 and PD-1 can poten-
tiate and refine an active immune response. Thus, while global and
non-specific, immune checkpoint blockade has the potential of en-
abling development of durable and specific responses with long-acting
memory [17, 43, 18].

Blocking antibodies to CTLA-4 (ipilumimab, and tremilimumab) and
PD-1 (nivolumab, pembrolizumab, pidilizumab, lambrolizumab,
BMS 936559, and MPDL3280A) as well as the ligand PD-L1 (MDX-
1105) have revolutionized cancer treatment. The 2010 FDA approval of
ipilumimab for the treatment of metastatic melanoma was based on a
phase III trial showing safety and significantly improved survival in a
subset of ipilumimab-treated patients [13]. In long-term follow-up
studies, when robust anti-tumor responses were elicited, they showed
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unprecedented durability (median 88 months) [63]. Phase I analysis of
BMS-936558 and nivolumab (human anti-PD-1 mABs) showed robust
responses in melanoma, renal cell carcinoma (RCC), and non-small
cell lung cancer (NSCLC), but no significant responses in pancreatic or
colorectal cancer [64]. Improved radiographic response correlated with
the level of PD-L1 expression on archival tumor [65]. Immune-related
adverse events (irAEs) occur in about 75 % of patients treated with
ipilumimab and 15-30 % have >grade 3 irAEs [13, 66, 67]. Generally
treatable, possible irAEs follow a well-described chronicity: early rash,
followed by colitis and hepatitis, later hypophysitis, less frequently
neuropathy, pancreatitis, lymphadenopathy, nephritis, and rare but
serious epidermal necrolysis and pneumonitis [67].

Published clinical experience with checkpoint blockade in treat-
ment of CNS tumors is limited to reassuring safety and response
profiles with ipilumimab treatment of melanoma brain metasta-
ses [68]. Preclinical data of checkpoint blockade in glioma
treatment, however, are encouraging. In immuno-competent mice
with established SMA-650 intracranial tumors, CTLA-4 blockade
was well tolerated with no evidence of CNS autoimmunity and
immune profiles normalized with increased CD4 and decreased
Treg counts, leading to 80 % long-term survival in treated mice
[69]. Immunological memory blocked tumor formation upon
contralateral intracranial re-inoculation of tumor in a mouse
model in which intratumoral IL-12 administration had previ-
ously been combined with systemic CTLA-4 blockade [70].
Promising preclinical data for PD-1 blockade combined with a
10-Gy radiation dose improved median survival from 26 to

52 days among C57/B6 mice with GL261 intracranial tumors
[71]. In a systematic preclinical study testing PD-1, PD-L1, PD-
L2, and CTLA-4 blockade (single agent and combinations),
combined anti-PD-1 and anti-CTLA-4 therapy showed the most
robust survival benefit with 75 % of treated mice alive at

140 days with no evidence of residual tumor. Notably, long-term
survivors showed initial tumor growth followed by gradual dis-
appearance of tumors on MRI and blocked tumor growth fol-
lowing re-challenge with tumor cells [72].

Results from ongoing clinical trials of checkpoint blockade are
highly anticipated, as GBM is accruing to numerous immuno-
therapy trials including the CTLA-4 blocking ipilumimab for
both newly diagnosed and recurrent GBM (Clinicaltrials.gov:
NCT02017717), the PD-1 blocking mAb nivolumab for recurrent
GBM both alone and in combination with ipilumimab
(Clinicaltrials.gov: NCT02017717), the PD-1 blocking mAb
pidilizumab in diffuse pontine glioma and recurrent GBM
(Clinicaltrials.gov: NCT01952769), the PD-1 blocking mAb
pembrolizumab with or without bevacizumab in recurrent GBM
(Clinicaltrials.gov: NCT02337491), and finally the PD-L1
blocking MEDI4736 (Clinicaltrials.gov: NCT02336165).
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Cellular immunotherapy

Adoptive autologous T cell transfer

Augmentation of an already primed tumor-antigen-specific immune
response can be achieved through infusion of ex vivo-expanded im-
mune cells, termed adoptive transfer [17, 18, 73]. One subtype of
lymphocytes educated against tumor in vivo are tumor infiltrating
lymphocytes (TILs) [17, 18, 73]. Harvesting of autologous TILs from
tumor biopsy sample followed by expansion in vitro with IL-2 and re-
infusion into patients has led to tumor regression and durable re-
sponses in some melanoma patients [74, 75], especially when coupled
with co-administration of immune-depleting treatments, as effector T
cells expand preferentially in a lymphopenic environment [76]. Exper-
iments using Epstein Barr virus-specific ex-vivo expanded autologous T
cells to treat post-transplant lymphoproliferative disorder show efficacy
of targeting a specific tumor antigen with cellular immunotherapy [77].
In one study for recurrent GBM, CMV-specific T cells were successfully
isolated and expanded from 13 of a total 19 patients, and 11 patients
received up to four infusions [78e] of expanded autologous CMV-
specific T cells with an encouraging median overall survival in these
patient of 403 days [78e]. General drawbacks of cellular immunother-
apy are difficulty and cost of large-scale production and limited post-
infusion survival of T cells in vivo, the latter which can potentially be
improved upon in an immune-ablative context or with concomitant
vaccination as shown in preclinical models [79]. Furthermore, depen-
dence on the T cell receptor (TCR) stimulatory apparatus imposes MHC
class restriction, preventing off-the-shelf high-throughput production
and renders these cells sensitive to tumor-mediated immune evasion
including PD-L1 expression and MHC-I down-modulation on tumor
cells.

CART cells

An innovative approach to overcome these limitations is the generation
of engineered chimeric antigen receptor (CAR) autologous T cells [17,
18]. These are T cells that have the MHC-restricted TCR replaced with an
engineered chimeric receptor containing a single antibody variable
chain (scFv) TAA/TSA-specific extracellular domain coupled to the
intracellular activation domain of the TCR [17, 18, 73]. Designed to be
antigen-specific, this elegant construct circumvents both MHC restric-
tion and allows for generation of large numbers of expanded T cells, as
they are engineered simply from patients’ PBMCs, vastly increasing the
yield of primed T cells [17, 18, 73]. CART cells have shown efficacy in
treatment of refractory lymphoid leukemia patients [12ee, 80] as well
as in patients with GD2 positive neuroblastoma [81]. Preclinical trials
with CARs to target different glioma TAAs show promising results.
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Adoptive transfer of EphA2-specific CAR T cells lead to regression
of intracranial glioma xenografs in immunocompromised SCID
mice with survival benefit in treated mice [82]. In another ap-
proach, bi-specific CAR T cells targeting both HER2 and IL-13R
were generated to avoid antigen escape and were found to show
enhanced anti-tumor activity compared to unispecific CAR T
cells. Furthermore, in an orthotropic GBM xenograft model, me-
dian survival of control mice was 35 days, with unispecific HER2
and IL-13R CAR T cell treatment improving median survival to
79 and 84 days, respectively, and a median survival of >120 days
when bispecifc CAR T cells were used [83]. EGFRVIII has also
been targeted by CAR T cells in preclinical models. EGFRvIII-
specific CARs administered systemically can home to areas of
invasive intracranial tumors in an orthotropic mouse model and
suppress growth, leading to survival benefit [84]. Current clinical
trials are assessing safety and efficacy of CAR T cells targeting
EGFRVIII (Clinicaltrials.gov: NCT01454596) [85], HER2
(Clinicaltrials.gov: NCT01109095), and IL13Ra2
(Clinicaltrials.gov: NCT02208362) [86].

Response monitoring in immunotherapy

Immunotherapy and standard-of-care treatment differ in kinetics
and amount of inflammation expected, calling for a revision of
radiographic response criteria. The response assessment in
neuro-oncology (RANO) criteria improved on prior radiographic
response criteria by acknowledging the problem of radiograph-
ically distinguishing pseudo-progression, occurring in 10-20 %
of patients, from true progression (PD), by requiring that PD
persist for 3 months after completion of chemoradiation [87].
Experience from immunotherapy trials in melanoma highlighted
the importance of immune-related response criteria (irRC) to
prevent premature treatment withdrawal [88]. The Immuno-
therapy Response Assessment in Neuro-oncology (iRANO)
working group has updated RANO criteria to incorporate im-
munotherapy kinetics and redefine responses and disease pro-
gression (PD) in immunotherapy-treated GBM, low-grade glio-
ma, and CNS metastases [89ee]. Appearance of progressive or
new lesions alone does not necessarily signify disease progres-
sion within 6 months of immunotherapy initiation [89ee]. This
allows for ongoing immunotherapy in patients tolerating treat-
ment for 3 months after initial “progression” on neuro-imaging
[89ee]. Should progression be confirmed at 3 months after
initial appearance, PD is dated back to its first appearance on
MRI; otherwise, treatment with immunotherapy continues as
long as tolerated [89ee]. These revised response criteria are
geared to incorporating our understanding of kinetics and
mechanism of immunotherapy with our clinical experience to
date and are awaiting validation moving forward.
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Emerging therapies and future directions

Combinatorial approaches

Treatment resistance to single-modality immunotherapy was seen with
EGFRVIII peptide vaccination, with recurrent tumor having lost
EGFRVIII expression [48, 39]. Combinatorial approaches could be
valuable in potentiating an immune response and in targeting non-
redundant immunosuppressive pathways. Combining CTLA-1 with
PD-1 checkpoint blockade has shown more rapid and durable re-
sponses in melanoma treatment [90e]. Moreover, data from the cancer
genome atlas shows that GBM subtypes express distinct immunosup-
pressive genes, indicating that different combinatorial approaches may
be warranted based on tumor expression profiling [91]. Preclinical
models combining vaccines with checkpoint blockade support com-
binatorial synergy [92, 93]. Several clinical trials are underway in GBM,
for instance, combining CMV peptide antigen vaccination with CMV-
specific adoptive T cell transfer (Clinicaltrials.gov: NCT 00693095),
augmenting EGFRVIII vaccination efficacy with depletion of Tregs using
the anti-IL2 mAb daclizumab (Clinicaltrials.gov: NCT00626015), and
combined CTLA-4 and PD-1 blockade for recurrent GBM patients
(Clinicaltrials.gov: NCT02017717) [18].

Immunotherapy appears to synergize with current standard-of-care
treatment both for newly diagnosed and recurrent GBM. Regression of
metastatic tumor distant from an initial irradiation site is possibly
caused by radiation-mediated “in situ” vaccine generation and termed
an abscopal effect [94]. This was noted in a patient with advanced
melanoma following treatment with targeted radiation-therapy and
ipilumimab [95]. In preclinical models, radiation combined with anti-
tumor vaccination showed significant survival benefit compared to
each modality alone [96], and in another model, radiation significantly
increased survival when combined with PD-1 checkpoint blockade
compared to either alone [71]. Radiation leads to immune activation
by upregulation of MHC-I molecules on irradiated tumor cells [97],
enhancement of antigen presentation through danger signals and TAA
release [99] following radiation-induced accelerated protein degrada-
tion [98], and increased expression of IFN-beta by tumor cells leading
to improved DC maturation and antigen presentation [96].

Clinical studies combining TMZ with rindopepimut surprisingly show
augmentation of immune responses rather than the expected response
attenuation in the context of cytotoxin-induced lymphopenia [39, 48].
This is postulated to occur through multiple mechanisms including
enhanced antigen release in dying cells, refined APC function in the
context of danger signals, immuno-stimulatory cytokines,
lymphopenia-driven homeostatic T cell proliferation leading to a rela-
tive decrease in Tregs, and further selective depletion of Tregs [18].
VEGF blockade and the standard-of-care in recurrent GBM also may
enhance anti-tumor immune responses [21]. In addition to driving
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tumor vascularization, VEGF restricts T cell migration through the
tumor vasculature, enhances Treg activity, inhibits DC maturation, and
induces apoptosis of CD8 T cells [18]. Trials combining bevacizumab
with either rindopepimut (ReACT) or pembrolizumab are underway
(Clinicaltrials.gov: NCT01498328 and NCT02337491)

|
Biomarkers for response to immunotherapy

Despite successes, only a subset of patients treated with immunother-
apy show clinical responses and the tumor-intrinsic factors conferring
immune evasion remain largely unknown, calling for predictive bio-
markers of immunotherapy response. Some studies show a correlation
between PD-L1 on archival tumor and response to PD-1 checkpoint
blockade [65]. EGFRVIII expression on tumor is required for EGFRvIII-
specific vaccine efficacy, with circulating anti-EGFRVIII antibody levels
serving as a possible biomarker for vaccine response [47¢e]. A more
generalizable immune-activation signature, however, could enable
consistent monitoring and cross-study evaluations. High-throughput
molecular profiling is defining immune signatures for both activation
and specificity of the immune response [99]. Multi-parameter flow
cytometry assessing the relative abundance of effector T cells, Tregs, NK
cells, and monocytes including immunosuppressive monocytes shows
association with survival in GBM, non-Hodgkin’s lymphoma, and RCC
[100] and has been enhanced with the development of time-of-flight
mass cytometry (CyTOF), enabling flow cytometry analysis in 25 di-
mensions [99]. High-throughput RNAseq transcriptome profiling of
tumor samples has been optimized for the clinical setting (NanoString,
nCounter platform) to quantify cell types by markers, tumor antigens,
and >400 immune genes. Transcriptome interrogation was correlated
to OS and PFS in neuroblastoma [101] and risk of recurrence, subtype,
and trastuzumab response in breast cancer [102]. A further break-
through is whole-repertoire T and B receptor amplification with high-
throughput sequencing (TCRseq and BCRseq, respectively), allowing
for antigen specificity analysis as well as informing about clonal Band T
cell population modulation through treatment, response to immuno-
therapy, and tumor recurrence [103]. As these techniques become
standardized and data analysis streamlined, a response to immuno-
therapy signature may crystallize as a predictive biomarker to couple
with radiographic and clinical monitoring to guide clinical decision-
making.

Summary and future directions

Experience from immunotherapy treatment of advanced and metastatic
cancers such as melanoma, RCC, NSCLC, and hematologic malignancies
has shown specific, robust, and durable anti-tumor responses. Immuno-
therapy for primary brain tumors is feasible, safe, and has shown encour-
aging results against primary brain tumors in preclinical and early clinical
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studies. While our understanding of anti-tumor immune responses in the
brain is evolving with ongoing immunotherapy trials, we require new tools
in clinical monitoring. The complex interplay between tumor heterogeneity,
immune surveillance, activation, and evasion on the one hand, and the
power of synergism and risk of incompatibility of combined therapy on
the other, calls for treatment guidance beyond radiographic monitoring.
Incorporation of response-predictive biomarkers will be essential. In glob-
ally recruiting the immune system and overcoming tumor immune-evasion
with checkpoint blockade, providing the immune response with specificity
using targeted or personalized vaccines and cellular immunotherapy, and
finally allowing for refinement, enhancement, and modulation of the anti-
tumor immune response with combinatorial approaches, immunotherapy
will likely come to the forefront of GBM treatment. High-throughput
immune-monitoring to provide activation and specificity signatures will
require combination with genetic tumor characterization as different sub-
types of GBM (pro-neuronal, neural, classical, and mesenchymal) are dis-
tinct pathologic entities with differing immune-suppression phenotypes and
antigen profiles [17, 104]. Combining immunophenotyping and molecular
tumor phenotyping of patients has the potential to help define the optimal
immunotherapy approach for each patient.
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