Abstract Virus taxonomy emerged as a discipline in the middle of the twentieth century. Traditionally, classification by virus taxonomists has been focussed on the grouping of relatively closely related viruses. However, during the past few years, the International Committee on Taxonomy of Viruses (ICTV) has recognized that the taxonomy it develops can be usefully extended to include the basal evolutionary relationships among distantly related viruses. Consequently, the ICTV has changed its Code to allow a 15-rank classification hierarchy that closely aligns with the Linnaean taxonomic system and may accommodate the entire spectrum of genetic divergence in the virosphere. The current taxonomies of three human pathogens, Ebola virus, severe acute respiratory syndrome coronavirus and herpes simplex virus 1 are used to illustrate the impact of the expanded rank structure. This new rank hierarchy of virus taxonomy will stimulate further research on virus origins and evolution, and vice versa, and could promote crosstalk with the taxonomies of cellular organisms.
MainViruses were discovered at the end of the nineteenth century as filterable agents causing infectious diseases of plants and animals 1, 2, 3, 4, 5. Subsequently, their pathogenicity and ability to undergo rapid evolutionary change 6 has sparked a large body of research, often connected to the so-called ‘microevolution’ of relatively closely related viruses 7, 8. However, over the last decade, our appreciation of the importance and distribution of viruses has expanded beyond the original parasitic–pathogen model, and now virologists recognize the role of viruses in host regulation and the maintenance of natural ecosystems 9. Shotgun metagenomic sequencing has also revealed the presence of a vast variety of viruses in diverse environmental samples and in apparently healthy organisms from all divisions of life 10, 11, 12, 13. To understand the true extent of virus genomic diversity—which may be significantly broader than that of their hosts—and the origins and forces that shape this diversity, virologists will have to systematically rationalize the more distant relationships between viruses, ideally reflecting their ‘macroevolution’, and virus taxonomy should provide an inclusive yet dynamic classification framework to reflect these relationships. In contrast to the taxonomies of cellular organisms, this new virus taxonomic framework will have to accommodate the current view that viruses have multiple origins (polyphyly) and that their diversity cannot be represented by a single virosphere-wide tree 14.
|