|
Multiple SARS-CoV-2 variants are circulating globally. Several new variants emerged in the fall of 2020, most notably:
In the United Kingdom (UK), a new variant of SARS-CoV-2 (known as 20I/501Y.V1, VOC 202012/01, or B.1.1.7) emerged with a large number of mutations. This variant has since been detected in numerous countries around the world, including the United States (US). In January 2021, scientists from UK reported evidence[1] that suggests the B.1.1.7 variant may be associated with an increased risk of death compared with other variants. More studies are needed to confirm this finding. This variant was reported in the US at the end of December 2020.
In South Africa, another variant of SARS-CoV-2 (known as 20H/501Y.V2 or B.1.351) emerged independently of B.1.1.7. This variant shares some mutations with B.1.1.7. Cases attributed to this variant have been detected in multiple countries outside of South Africa. This variant was reported in the US at the end of January 2021.
In Brazil, a variant of SARS-CoV-2 (known as P.1) emerged that was first was identified in four travelers from Brazil, who were tested during routine screening at Haneda airport outside Tokyo, Japan. This variant has 17 unique mutations, including three in the receptor binding domain of the spike protein. This variant was detected in the US at the end of January 2021.
(1)
B.1.1.7, aka 501Y.V1 variant, 20I/501Y.V1, and UK COVID variant 英国变异株
Rambaut A, Loman N, et int., and Volz E. “Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations.” Virological.org, 2020.
(2)
B.1.351, aka 501.V2 variant, 20C/501Y.V2, and South African COVID-19 variant 南非变异株
Tegally H, Wilkinson E, et int., and de Oliveira T. “Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa.” medRxiv, 2020. doi.org/10.1101/2020.12.21.20248640.
(3)
P.1, aka 501Y.V3 variant, and K417T/E484K/N501Y 巴西变异株
Naveca F, Nascimento V, et int., and Bello G. “Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein.” Virological.org, 2021.
新的变异株:
B.1.526 纽约变异株
SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape
Abstract
Wide-scale SARS-CoV-2 genome sequencing is critical to monitoring and understanding viral evolution during the ongoing pandemic. Variants first detected in the United Kingdom, South Africa, and Brazil have spread to multiple countries. We have developed a software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using this tool, we detected an emerging lineage of viral isolates in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage appeared in late November 2020, and isolates from this lineage account for ~5% of coronavirus genomes sequenced and deposited from New York during late January 2021.
https://www.biorxiv.org/content/10.1101/2021.02.14.431043v1
CAL.20C 南加州变异株
Emergence of a novel SARS-CoV-2 strain in Southern California, USA
Abstract
Since October 2020, novel strains of SARS-CoV-2 including B.1.1.7, have been identified to be of global significance from an infection and surveillance perspective. While this strain (B.1.1.7) may play an important role in increased COVID rates in the UK, there are still no reported strains to account for the spike of cases in Los Angeles (LA) and California as a whole, which currently has some of the highest absolute and per-capita COVID transmission rates in the country. From the early days of the pandemic when LA only had a single viral genome uploaded onto GISAID we have been at the forefront of generating and analyzing the SARS-CoV-2 sequencing data from the LA region. We report a novel strain emerging in Southern California. Most current cases in the catchment population in LA fall into two distinct subclades: 1) 20G (24% of total) is the predominant subclade currently in the United States 2) a relatively novel strain in clade 20C, CAL.20C strain (∼36% of total) is defined by five concurrent mutations. After an analysis of all of the publicly available data and a comparison to our recent sequences, we see a dramatic growth in the relative percentage of the CAL.20C strain beginning in November of 2020. The predominance of this strain coincides with the increased positivity rate seen in this region. Unlike 20G, this novel strain CAL.20C is defined by multiple mutations in the S protein, a characteristic it shares with both the UK and South African strains, both of which are of significant clinical and scientific interest
https://www.medrxiv.org/content/10.1101/2021.01.18.21249786v1
|
|