10月15日,Cell 杂志在线发表了中国科学院生物物理研究所王艳丽研究组关于CRISPR-Cas系统中外源片段获取阶段的研究进展。标题为Structural and Mechanistic Basis of PAM-dependent Spacer Acquisition in CRISPR-Cas Systems。该文揭示了Cas1-Cas2-PAM-DNA复合物等一系列复合物的晶体结构,证明了新间隔区获取依赖于PAM的互补序列,并为该过程的作用机制提供了重要的结构生物学基础。
Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
DOI: http://dx.doi.org/10.1016/j.cell.2015.10.008Bacteria
Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 3′ overhang segments. The PAM-complementary sequence in the 3′ overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.
本文选自:生物谷