冷冻电镜技术是近年来发展最为迅速的结构生物学技术之一,并在生命科学领域得到了广泛应用。它主要利用极速超低温冷却使样品中的水玻璃态化,从而使蛋白、病毒、细胞等生物结构的完整性和瞬间生理活性状态得以保存和观察。
近期,华南农业大学动物科学学院孙京臣教授与美国加州大学洛杉矶分校(UCLA)的周正洪教授等合作,以共同通讯作者在国际著名期刊《Nature》和《eLIFE》上连续发表了两篇关于家蚕质多角体病毒(BmCPV)的高分辨冷冻电镜研究成果,处于世界领先水平。
10月26日,孙京臣教授(共同通讯作者)与周正洪教授、张兴博士等合作于国际顶级学术期刊《Nature》(2014年影响因子:41.456)发表另一篇题为“双链RNA病毒的基因组片段与RNA聚合酶复合物的原位结构研究”的研究论文(In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus)(doi:10.1038/nature15767)。该研究采用基于直接探测电子成像(Direct electron-counting)和非对称三维重构(Asymmetric reconstruction)的冷冻电镜技术,揭示了BmCPV病毒基因组处于活性转录状态时(t-CPV)内部核酸与蛋白质的相互作用关系,将冷冻电镜技术从观察病毒表面结构深入到了内部结构。另外,双链RNA病毒是病毒中最大的类群,其中轮状病毒作为双链RNA病毒家族最知名的病毒之一,每年引起接近百万的新生儿死亡,因此该成果也将推动人类、动物等类似病毒增殖复制机制的研究,为临床病毒病的防治等提供重要的借鉴和依据。
2015年8月4日,孙京臣教授以共同通讯作者身份与周正洪教授、余学奎博士等合作研究的成果“双链RNA病毒ATP酶介导的RNA转录和加帽新机制”(A putative ATPase mediates RNA transcription and capping in a dsRNA virus)(doi:10.7554/eLife.07901)于《eLIFE》(2014年影响因子:9.322)在线发表。病毒三维结构的分辨率达到了0.3nm,并首次发现了BmCPV增殖过程中ATPase介导的信号转导通路,该研究发现病毒通过衣壳表面的蛋白“感知”周围环境,当环境适合便通过信号通路打开病毒内部的“开关”,激活病毒的转录,以繁殖子代病毒。相关机制与细胞中蛋白激酶的作用相似,将为今后探究病毒内部核酸结构提供全新的视角。
Nature. 2015 Oct 26. doi: 10.1038/nature15767.
In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus.
Zhang X1, Ding K2,3, Yu X2, Chang W1, Sun J2,4, Hong Zhou Z1,2,3. 1California Nanosystems Institute, University of California, Los Angeles, California 90095, USA. 2Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA. 3Bioengineering, University of California, Los Angeles, California 90095, USA. 4Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
Abstract Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus. 本期编辑:Tony
|